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Abstract
The problem of relocating a set of objects to designated areas amidst movable obstacles can be framed as a Geometric
Task and Motion Planning (G-TAMP), a subclass of task and motion planning problem (TAMP) [1]. Traditional approaches
to G-TAMP have relied either on domain-independent heuristics [2] or on learning from planning experience [1, 3–7] to
guide the search, both of which typically demand significant computational resources or data. In contrast, humans often
use common sense to intuitively decide which objects to manipulate in G-TAMP problems. Inspired by this, we propose
leveraging Large Language Models (LLMs), which have common sense knowledge acquired from internet-scale data,
to guide task planning in G-TAMP problems. To enable LLMs to perform geometric reasoning, we design a predicate-
based prompt that encodes geometric information derived from a motion planning algorithm. We then query the LLM
to generate a task plan, which is then used to search for a feasible set of continuous parameters. Since LLM is prone
to mistakes [8], instead of committing to LLM’s outputs we extend Monte Carlo Tree Search (MCTS) to a hybrid action
space and use the LLM to guide the search. Unlike the previous approach [9] that calls an LLM at every node and
incurs high computational costs, we use it to warm-start the MCTS with the nodes explored in completing the LLM’s
task plan. On six different G-TAMP problems, we show our method outperforms previous LLM planners and pure search
algorithms.
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1 Introduction

Imagine a robot operating in a restaurant tasked with
bringing items to a kitchen. Ideally, you would directly
fetch target objects, but there often are obstacles in the
way as shown in Figure 1. To solve the problem, the
robot must figure out a sequence of objects and motions
to clear obstacles and bring the goal objects to desired
regions. These problems can be formulated as a geometric
task and motion planning (G-TAMP) problem, a complex
problem that involves hybrid action space that includes
discrete actions, such as selecting which skill to use
and which object to manipulate, as well as continuous
actions, like determining the specific manipulation motion
for each object. Additionally, the problem involves intricate
reachability constraints among the movable obstacles.

Currently, there are two main approaches to G-TAMP prob-
lems. The first is pure-planning algorithms [2], which typi-
cally integrate classical AI planning algorithms [10] that use
a domain-independent heuristic function with sampling or
optimization to handle continuous parameters. While effec-
tive for general TAMP problems, this approach struggles
with utilizing domain-specific information to identify the
cause of infeasibility. For example, to determine whether the
door needs to be opened in Figure 1, it must first attempt
to plan a motion across the door, and only upon failure
seek alternative discrete actions, that may open the door.
This process is highly inefficient, often requiring numerous
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Figure 1. An example of a G-TAMP problem. Left: The initial
configuration. The robot must bring the wine from Table 1, Coke
from Counter 1, and a BBQ grill to Counter 2. The grill is
already in its goal position but obstructing the placement of
other goal objects, and a closed door between the kitchen and
dining area must be opened to traverse these two areas. Right:
A goal configuration. To achieve this, the robot must open the
door, temporarily remove the grill from Counter 2, place other
objects, and then bring back the grill.

motion planning calls to identify the source of the failure. It
would be much more efficient to perform causal reasoning
such as “because the door is closed, and the door is in the

1Graduate School of AI, Korea Institute of Advanced Science and
Technology

Corresponding author:
Beomjoon Kim, Korea Institute of Advanced Science and Technology,
Graduate School of AI, Seoul, Korea.
Email: beomjoon.kim@kaist.ac.kr
∗co-first authors

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

way of moving the wine to Counter 2, we need to open the
door.”

Alternatively, we can use learning to guide search
from planning experience. In particular, several works
learn domain-specific heuristic functions or constraints to
guide task planning, which is planning a sequence of
discrete actions [4, 5, 11, 12]. They have been shown
to considerably improve planning speed compared to
pure planning strategies because they can learn through
correlation. For example, in all successful plans, the door
was opened in states where the robot had to move objects to
the kitchen from the dining area, so we must open the door
now. The problem, however, is that they typically require a
significant amount of planning experience to acquire such
knowledge, which is time-consuming to collect.

Our observation is that the knowledge required for task
planning in a G-TAMP problem is straightforward for an
agent with common sense, provided that the problem
is expressed with the abstract representation that clearly
encodes the constraints and goals. For example, in Figure 1,
humans intuitively understand that the door needs to be
opened if they know that the door is in the way of a
manipulation motion. Based on this observation, we propose
to use LLMs pre-trained on internet data for task planning,
as they likely possess such common sense without additional
training. The main challenge, however, lies in designing
prompts that are effective across diverse problems and
in managing erroneous outputs from an LLM caused by
incorrect reasoning or hallucination [8, 13].

One approach for designing the prompt is to adopt that
of SayCan [14], which consists of a task instruction, action
history, and example plan. However, because it lacks state
information, it is difficult to perform state-based causal
reasoning. There also are several prompt designs that include
predicate-based state information [15–17]. However, they
typically lack geometric information such as whether an
obstacle is in the path to a particular object, which can only
be evaluated via motion planning algorithms.

To solve this, we propose to use geometric predicates,
which have shown to be effective in learning a relational
value function for G-TAMP problems [1, 11], in our prompt
to represent goals, states, and domains. As in previous work,
we use a motion planning algorithm to compute these which
encode reachability and occlusion. While our prompt can
take various formats, we use the PDDL-style format for its
clarity and proven efficacy with LLMs [15, 18].

To combat the LLM’s prediction errors [13, 16], we
propose integrating an LLM with tree search, so that we
can explore actions beyond those suggested by the LLM.
The critical design choice here is how to structure the
interface between the tree search and LLM. One approach
is to invoke the LLM at every node. For example, LLM-
MCTS [9] combines an LLM with MCTS by deriving
a policy from a batch of LLM responses and using it
to determine which action to explore first. However, this
method is highly inefficient since it calls the LLM at
every node, and each LLM call involves processing a long
sequence of tokens containing objects, states, and domain
descriptions, with computation scaling quadratically to token
length. Furthermore, MCTS is only restricted to discrete
action spaces and is not applicable to G-TAMP.

To solve this, we first extend MCTS to hybrid action
spaces and propose a method called Search Tree augmented
by Langauge Model (STaLM), which uses an LLM to warm-
start an MCTS. STaLM first queries the LLM for a batch of
task plans that give discrete action choices but not continuous
parameters. It concretizes these plans by searching for a
feasible sequence of continuous parameters, and if this fails,
initiates an MCTS that has been warm-started with the nodes
that have been explored while trying to concretize the LLM’s
plans. Our intuition is that by concretizing batch queried
task plans and using them for warm-started MCTS, the
number of LLM queries can be minimized while leveraging
the common sense from LLM to avoid numerous motion
planning calls to identify the source of the failure. Figure 2
demonstrates our method.

In six different G-TAMP problems, we demonstrate that
our prompt design is more effective than the existing prompt
designs, and show that STaLM is more computationally
efficient than the state-of-the-art pure planning algorithms or
other LLM-based planning algorithms.

2 Related work

2.1 Task and motion planning
Task and motion planning (TAMP) is a class of planning
problems that require integrated discrete task planning and
continuous motion planning [2]. One approach to TAMP
is computing a task plan and refining it via sampling or
optimization. Here, a task plan is a sequence of symbolic
actions, which refer to an action with its continuous
parameters unspecified. For example, PDDLStream [19]
creates a task plan with a classical planning system [10]
and refines the plan by sampling the continuous parameters
with external functions called streams. eTAMP [20] uses
tree search [21] to sample continuous parameters for
the task plans from top-k planner [22]. Logic Geometric
Programming (LGP) [23] frames TAMP as a continuous
mathematical program and explicitly aims to optimize the
final configuration represented in an objective function. LGP
solvers use top-k-planner [24], tree search with hierarchical
relaxation of constraints [25], or tree search guided by
hand-designed heuristics [26] to compute a task plan. They
then solve continuous optimization problems with each
symbolic action in the given task plan as a constraint to
obtain continuous parameters. However, these methods lack
common sense and require performing a search to compute a
plan even for trivial matters like “pick the occluding object”,
rendering them inefficient.

2.2 Learning to guide task and motion
planning

There have been several attempts to adopt the intuitions
from AlphaGo [27–29] to G-TAMP problems. Several studies
propose to guide task planning by training a heuristic
function based on images [5, 30], a graph that encodes
the grounded predicates expressing the relationship among
objects [1, 4, 31], or context-dependent abstractions [32].
While a raw image does not explicitly include reachability
and occlusion, Kim et al. [1] directly use predicates about
occlusions. Inspired by this, we also encode the state
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Figure 2. Overview of STaLM. (1) CreatePrompt uses a motion planning algorithm to compute state information for the prompt,
such as one in Figure 3, for querying the LLM. (2) QueryLLM uses the prompt to generate Nbatch number of task plans, which are
a sequence of discrete actions such as Pick(sprite), Place(sprite, on, counter1). (3) Concretize concretizes the given task plans by
searching a feasible sequence of continuous parameters (e.g. gripper pose, joint trajectories, etc) for each discrete action. The
squares denote discrete nodes for discrete action choices and circles denote continuous nodes for continuous parameter choices.
After we have both discrete and continuous decisions, we simulate the next state by applying it and moving on to the next discrete
node. If we succeed in finding a feasible concrete plan, we return the plan, otherwise, we commence the next step. (4)
WarmStartedUCT consists of two processes: WarmUpTree and Simulate. WarmUpTree initializes the search tree with the states
and actions explored in step (3), where the values of leaf nodes are estimated via roll-out and backed up along the tree. Simulate
uses the usual MCTS operations on the warm-started tree: node selection using UCT, expansion, rollout, and backup. The orange
bubble shows nodes explored by tree search, and the green bubble shows nodes explored using LLM’s suggestions. We use
Progressive Widening to expand at continuous nodes. See Appendix B for detailed pseudocode.

with a set of grounded geometric predicates. Other works
train the samplers for continuous choices such as grasp
or placement of the object using meta-learning [33] or
generative models [6, 7, 34]. However, to train any form
of function, a significant computational cost is required to
collect training data. In contrast, we use a pre-trained LLM
to guide the search without additional learning. There are
several studies [35–39] that propose to learn predicates and
operators, enabling more task-specific planning. Our work
can be used in conjunction with these methods.

2.3 Planning with LLMs
Several methods [9, 14–16, 40–44] use LLMs for planning
with distinct skills, constraints, and objectives. Given a task
instruction, SayCan [14] outputs the probability of the next
skill as a product of the LLM’s probability of using that skill
and skill affordance, the probability of that skill succeeding
in the current state. Yet, its prompt lacks state information
necessary for state-based causal reasoning. To enable this,
a line of work [15–17, 43, 44] provides predicate-based
state information to the LLM. However, even with state
information, several works have shown that LLMs are not
perfect at planning and tend to produce erroneous outputs [8,
13]. To combat this, other works [13, 40] use LLM with
self-refinement [45] to generate a new response by providing
past output and feedback. However, this strategy also shows
limited improvement on domains that require a significant
amount of diversity and exploration [8, 40] since the choice

of actions is fundamentally limited to actions given by the
LLM. LLM-MCTS [9] instead queries the LLM to obtain a
policy to guide MCTS via PUCT [46] and explore beyond
actions that are suggested by LLM. Yet, LLM-MCTS has
to call the LLM for every simulation, which is extremely
expensive. In contrast, our framework only queries the LLM
at the initial state.

3 Method

3.1 Problem formulation
We consider an environment that consists of a set of movable
objects O = {oi}nOi=1, a set of regions R = {ri}nWi=1, and
a set of doors D = {di}nDi=1. We model the world with a
deterministic Markov Decision Process (MDP) with a state
space S, a parameterized action space A, a deterministic
transition model T , and reward functionR. A state is defined
by the stable poses of movable objects, Poi ∈ SE(2),
whether the doors are opened or closed Udi ∈ {0, 1}, and
robot configuration c ∈ C, and is denoted as s ∈ S where s =
(Po1 , . . . ,PonO ,Ud1 , . . . ,UdnD , c). All entities have known
and fixed shapes. An action a(δ, κ) ∈ A consists of an
operator name a, such as PLACE, a set discrete parameters
δ, such as a region to place an object down, and a set of
continuous parameters κ, such as a trajectory.

Each a(δ, κ) induces a mapping T (s, a(δ, κ)) from s
to s′ ∈ S. If a(δ, κ) cannot be legally executed at s, we
let s′ = s, absorbing the “failure” state and terminating
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the simulation. A goal G is given as a conjunction of
(AtPosition ogoal, dir, oref ), where ogoal ∈ O, dir ∈
{on, left, right, front, behind}, and oref ∈ O ∪R. A prob-
lem instance consists of (O,R,D, s0,G, T,R, h), where s0
is the initial state and h is the planning horizon. The objective
is to find a sequence of actions that satisfies G.

We define an action as a(δ, κ), which has a discrete action
a(δ) and continuous parameter κ, and a sequence of a(δ) as
a task plan. Our method consists of three main components:
(1) a prompt design based on geometric predicates for
querying the LLM for task plans, (2) a search algorithm
that concretizes the task plan by finding a feasible set of
continuous parameters, and (3) if unsuccessful, commences
a hybrid action space Upper Confidence Tree (UCT) [47]
warm-started with explored nodes.

3.2 Predicate computation and prompt design
Our prompt consists of a task instruction, domain
description, goal, objects, and the initial state as shown
in Figure 3. We use a set of geometric predicates such
as PICKOCCLUDEDBY and PLACEOCCLUDEDBY, and use
motion planning algorithms to compute them. Concretely, we
first compute the path to pick or place the designated object
without considering other movable objects. Then, we check
collisions between the swept volume of the motions and
movable objects. If there is a collision, we set the occlusion
predicate as true.

Part of our Task Instruction (Fig 3 top) asks for
possible challenges for the problem. Empirically, without
this, we have observed that LLMs often fail to respect an
action’s preconditions (e.g. pick the goal object despite being
occluded by other objects). This was inspired by chain-of-
thought (CoT) [48], which showed that LLM’s reasoning
capability improves when asked to generate intermediate
reasoning steps. Our insight is that since our problem is
geometric, in which occlusion relations are of main concern,
this will make the LLM to respect the preconditions. An
example prompt of STaLM is included in Appendix F.

3.3 Search Tree augmented by Language
Model (STaLM)

The key idea of STaLM is to prioritize the actions given
by the LLM but complement the planning with additional
search whenever in case LLM fails to provide the solution.
Unlike the previous work which queries the LLM at every
time step, we simply use the states we explored during the
concretization of task plans to warm up the tree search. This
reduces the number of expensive LLM calls, but still directs
the search into a promising region of the search space.

Algorithm 1 gives a pseudocode for STaLM. It takes
an initial state s0, planning horizon h, LLM query batch
size Nbatch, and planning budget Nbudget as inputs. The
algorithm first queries the LLM for a batch of task plans with
CreatePrompt, which creates our prompt from s0 and
G (L2), and concretizes the task plans via Concretize,
which searches for a sequence of continuous parameters
using sampling (L3). If any of the plans succeeds, we return
the plan, otherwise, we commence WarmStartedUCT, an
MCTS for hybrid action space. We pictorially explain how

Algorithm 1 works in Figure 2. More detailed pseudocode
for each subroutine is included in Appendix B.

Algorithm 1: STaLM (s0, h, Nbatch, Nbudget)

1 Global Variables: G, H, γ
2 TaskPlans←

QueryLLM(CreatePrompt(s0,G), Nbatch)
3 success, Plans← Concretize(TaskPlans, s0, h)
4 if success
5 return Plans
6 Q← WarmStartedUCT(Plans, s0, h,Nbudget).Q
7 return argmaxa,δ,κQ(s, a(δ, κ))

4 Experiments

4.1 Experiment setup
We implement our domains that consist of two areas, a
kitchen and a hall, separated by a door that must be opened
to navigate the areas in PyBullet [49]. Each area has regions
on which movable objects can be placed. We have the
following assumptions: (1) the robot only uses its right
arm for manipulation. (2) We have a pre-defined robot base
pose (xr, yr, ψr) ∈ SE(2) for each region and door. (3)
The robot grasps object o using a pre-defined grasp position
(xog, y

o
g , z

o
g), and (4) the orientation of o in the robot frame,

ωo, is fixed during placement.
We design six problems to test the capabilities of different

algorithms as shown in Figure 4. There are n(R) + 4×
n(O) possible placements in our domains where 4 represents
the four possible directions, left, right, front, and behind.
For P1-6, the number of possible placement locations is
31, 23, 50, 27, 21, and 27 respectively. We perform 50 trials
for P1 to P6 with max search depth h of 20 and a time budget
of 300 seconds for P1, 2, 4 and 600 seconds for P3, 5, 6.

The robot has 3 operators: PICK, PLACE, and OPEN.
Table 1 summarizes each operator’s discrete and continuous
parameters. The continuous parameters that consist of base
trajectory τnav , gripper position pg and orientation ωg ,
and arm motion τg for each operator are sampled by the
following procedures.

• PICK

1. Use a motion planner, Probabilistic Roadmap (PRM),
to compute τnav from the current robot base pose to
Pb.

2. Gripper position pg is given as the discrete parameter
for PICK. With the base pose fixed at Pb, uniform-
randomly sample the gripper orientation ωg from the
pre-defined ranges of pitch φ ∈ [0, 45°] and yaw χ ∈
[−60°, 60°] of the gripper.

3. Find an inverse kinematics (IK) solution for the
gripper pose (pg , ωg). Compute τg by linearly
interpolating from the current robot arm joint
configuration to the IK solution.

• OPEN

1. Use a motion planner (PRM) to compute τnav from
the current robot base pose to Pb.
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Task Instruction
You are an expert proficient in PDDL and planning actions for a problem. Your response should follow this template:
## Possible challenges for unachieved goals based on given state ##\n\n## Plan ##\n 

plan = [('action_type', 'args_1', 'args_2',...), ]

(:init 
	[(HandAvailable, ),

(AtPosition, salter, on, counter2),  

(AtPosition, bottle1, on, counter2),   
(AtPosition, salter, behind_of, bottle1),  

(AtPosition, bottle1, front_of, salter), 

(PickOccludedBy, salter, bottle), 

(PlaceOccludedBy, salter, on, counter1, bottle), 

(PlaceOccludedBy, salter, on, counter2, bottle), 

(PlaceOccludedBy, salter, on, shelf, bottle), 

(PlaceOccludedBy, salter, on, table1, kitchen_door), 

(PlaceOccludedBy, salter, on, table2, kitchen_door),

(PlaceOccludedBy, bottle, on, table1, kitchen_door), 

(PlaceOccludedBy, bottle, on, table2, kitchen_door),  

(PlaceOccludedBy, salter, left_of, bottle, bottle), 

(PlaceOccludedBy, salter, right_of, bottle, bottle), 

(PlaceOccludedBy, salter, front_of, bottle, bottle), 

(PlaceOccludedBy, salter, behind_of, bottle, bottle)]

(:goal (AtPosition, salter, on, sink))

Generate a plan to achieve the goals from init.

(:objects 
salter - movable_object,  
bottle - movable_object, 

counter1 - region,  
counter2 - region, 

shelf - region, 

table1 - region, 

table2 - region, 

kitchen_door - door)

Goal

Domain Description (Predicates)

(define (domain shop) 
(:requirements :typing :derived-predicates) 
(:types  movable_object region openable - object) 
(:constants on left_of right_of front_of behind_of - direction)    

(:derived (UnsafePick ?s) 
 (exists (?occluder) ((PickOccludedBy ?s ?occluder))))

(:derived (UnsafePlace ?s ?dir ?ref) 
(exists (?occluder) ((PlaceOccludedBy ?s ?dir ?ref occluder)))))

(:predicates

(RobotHolding ?o) ; True if robot is holding movable_object

(HandAvailable ) ; True if robot hand is available

(AtPosition ?s ?dir ?ref) ; True if s is at direction of ref

(IsClosed ?o) ; True if the door is closed 

(PickOccludedBy ?o ?occ) ; True if (pick, o) is occluded by occ.      

(PlaceOccludedBy ?o ?dir ?ref ?occ) ; True if (place, o, dir, ref) is

                                                                 occluded by occ

(:action place 
        :parameters (?o ?dir ?ref) 
        :precondition (and (RobotHolding ?o) 

                                         (not (UnsafePlace ?o ?dir ?ref))) 
        :effect (and (not (RobotHolding )) (HandAvailable )               

                             (AtPosition ?o ?dir ?ref)))

(:action open 
        :parameters (?o ) 
        :precondition (and (IsClosed ?o) (HandAvailable )) 
        :effect (and (not (IsClosed ?o))))

(:action pick 
        :parameters (?o ) 
        :precondition (and (HandAvailable ) (not (UnsafePick ?o))) 
        :effect (and (not (HandAvailable )) (RobotHolding ?o))))

Domain Description (Actions)

Initial state information

Figure 3. An example prompt for the state shown in the top-right corner (the image is not given to the LLM). Task instruction
defines the output template and ask the LLM to state the challenges. Domain Description (Predicates) defines the set of predicates
for our domain. Domain Description (Actions) gives operator definitions. The right column gives a set of entities, the initial state,
and the goal defined by the predicates and the entities.

Discrete parameters Continuous parameters
otarget dir oref Pb pg ωg τnav pg ωg τg

PICK otarget ∈ O · · (xr, yr, φr) (x
otarget
g , y

otarget
g , z

otarget
g ) · Motion

planner

· (φ, χ) Motion
plannerOPEN otarget ∈ D · · (xr, yr, φr) (x

otarget
g , y

otarget
g , z

otarget
g ) ω

otarget
g · ·

PLACE otarget ∈ O
on, left, right,
front, behind

oref ∈ O if dir ! = on
oref ∈ R if dir == on (xr, yr, φr) · ω

otarget
g (xp, yp) ·

Table 1. Operator descriptions for PICK, OPEN, and PLACE. A dot indicates an unused parameter. otarget is the target object. dir
and oref are the placement direction and reference object respectively. There is only one Pb ∈ SE(2) for each target region r. For
PICK and OPEN, there is a single gripper position pg . In OPEN, we have the fixed gripper orientation ωg for the door. For PLACE, we
compute ωg so that otarget’s orientation with respect to the region on which it is placed stays same as before the pick. Both base
and arm motions, τnav and τg respectively, are computed using motion planners and apply to all operators. For PLACE,
pg = (xp, yp) is randomly sampled from the placement region’s surface. For PICK, ωg consists of gripper’s pitch φ and yaw χ,
randomly sampled from specified ranges.

2. Both pg and ωg are given as the discrete parameters
for OPEN. Find an IK solution for (pg , ωg) and
compute τg by linear interpolation.

• PLACE

1. Use a motion planner (PRM) to compute τnav from
the current robot base pose to Pb.

2. ωg is given as a discrete parameter for PLACE. With
the base pose fixed at Pb, uniform-randomly sample
pg = (xp, yp) in the region for placement. We use
rejection sampling until the direction of pg aligns with
dir with respect to oref .

3. Find an IK solution for (pg , ωg) and compute τg by
linear interpolation.

If we fail to sample feasible τnav , pg , ωg , and τg
within a fixed number of trials, we mark the action

as infeasible. The goal is defined as a conjunction of
(AtPosition ogoal, dir, oref ). We give a reward of 3
for each AtPosition accomplished and -6 for sampling
infeasible action. The discount factor γ is 0.99, and if we
find a successful plan, we stop the planning and execute it.

4.2 Baselines
We compare STaLM with the following baselines:

• UCT [47]: Standard UCT without LLM’s guidance.
Nbudget is set to 35.

• UCT-with-Hcount [1]: Instead of rollout, we use a
modified version of a hand-designed heuristic for
G-TAMP, Hcount, as a value function for UCT.
Hcount estimates the cost-to-go based on the number
of occlusions for otarget. Details are given in the
Appendix D. Nbudget is set to 35.
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Initial config Goal Purpose & Challenge
 Bottle 2 and 3 must be cleared before picking 

the salte

 The robot must open the door before picking 
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 Tests if the robot can prioritize actions 
unspecified by the goal.

 When holding the grill, the robot must explore 
options other than placing it back on the 
counter 2

 Test if the robot can temporarily displace the 
object already in the goal

  The robot must temporally place the BBQ 
grill to regions other than Counter 1 to make 
room for placing coke and sprite, and place 
the BBQ grill back to Counter 

 Test if the robot can temporarily place the 
target to a region unspecified by the goal
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Beer
Sprite

Figure 4. Description for problems showing the initial states
and the goals. The purpose and possible challenges of each
problem are listed. Goal objects are shown in cyan.

• PDDLStream [19]: a pure TAMP algorithm that uses
a domain-independent heuristic function for guiding its
search. We use an adaptive algorithm of PDDLStream.

• SayCan [14]: an LLM planner whose prompt includes
task instruction and action history in the prompt. Because
GPT does not support the LLM score evaluation, we use
the empirical policy distribution from [9] with Nbatch =
5 responses as a likelihood of action and use action’s
precondition as the affordance score.

• Iterative-Replanning [40]: uses our prompt to query the
LLM for a single task plan and concretize it. If the
plan does not succeed, Iterative-Replanning replans by
appending up to two previously failed plans and calling
the LLM for a new task plan. If no feasible plan is found
after 5 attempts, the next action from the most recent plan
is executed.

• LLM-MCTS [9]: computes the action distribution by
counting the number of actions in the Nbudget = 5
LLM responses and using it for action selection with
PUCT [46] in MCTS. Nbudget is 35.

STaLM uses Nbatch = 5, Nbudget = 30. For all LLM-based
methods, we use gpt-4-turbo-2024-04-09 with a
decoding temperature of 1. Detailed hyperparameters of
STaLM is included in Appendix C.

4.3 Results and analysis
Table 2 shows that STaLM outperforms all baselines in
all problems in terms of planning speed and success
rate. UCT performs poorly since it cannot simulate every
possible placement for multiple steps ahead with Nbudget =
35. UCT-with-Hcount calls the motion planner numerous
times to compute the occlusion for every new state we
encounter, leading to time-outs in P1 and P3. STaLM, in
contrast, computes occlusions only when querying the LLM.
Furthermore, in P5 and P6, UCT-with-Hcount fails to handle
states in local optima where the objects already in the goal
must be moved to another region because HCount explicitly
penalizes such action. Such local optima are frequently
encountered in P5 when the tree search greedily follows the
reward and is given as the initial state for P6.

PDDLStream treats each sample of continuous parameter
as an “PDDL object”, an instance or item that exists in
the world described by the PDDL domain and problem
definitions, like a movable object or a region. Such
PDDL objects are accumulated as the planning proceeds,
slowing down the task planning [50]. For instance, in P6,
PDDLstream fails to sample collision-free placement pose
for the coke occluded by the BBQ grill, but it can still
reuse the gripper pose or base trajectories if the occluders
are cleared. Therefore, numerous gripper poses and base
trajectories that have been tried are stored in a cache, often
exceeding 2000 in number. This results in about 100 seconds
to make a task plan because the task planner must consider
the combinations of accumulated PDDL objects, eventually
leading to time-out.

SayCan avoids infeasible action via affordance score but
cannot prioritize occlusion-clearing action since the prompt
lacks state information and the LLM score of clearing the
obstacle is indistinguishable from other actions. In contrast,
our prompt includes state information about occlusions, so
the LLM provides the task plan that clears occlusions.

Iterative-replanning uses the LLM to modify a task plan
based on the given feedback about what action of the task
plan is infeasible. However for problems P3-6, where the
set of feasible continuous parameters is relatively smaller
than P1-2, a common failure mode was the LLM recklessly
attributing the failure to the task plan even when the task
plan could achieve success by further search of continuous
parameters. STaLM, in contrast, is able to further search
for continuous parameters of promising task plans by using
WarmStartedUCT to initialize the tree with task plans
from LLM and conducting MCTS.

All of LLM-MCTS leads to time-outs because, for each
action, LLM-MCTS makes Nbudget number of LLM calls
to compute an empirical action distribution where each call
takes 10-20 seconds. STaLM instead makes a single LLM
query to compute multiple plans, requiring fewer LLM calls
for the same number of simulations and saving a significant
amount of time. Example LLM responses of STaLM is
shown in Appendix E.

We examine the effectiveness of integrating tree search
with LLM by comparing with a variant of STaLM, STaLM
without UCT which is STaLM with Nbudget = 0, and does
not search further after Concretize. From Table 3, we
see that STaLM without UCT shows lower performance than
STaLM because it is limited to the LLM’s response. For
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Method Metric P1 P2 P3 P4 P5 P6

UCT Success rate 0.02 0.8 0.00 0.20 0.00 0.00
Time (s) 229.43 93.892 t/o 122.48 t/o t/o

UCT
-with-Hcount

Success rate 0.00 0.90 0.00 0.36 0.08 0.00
Time (s) t/o 163.80 t/o 219.67 356.65 t/o

PDDLStream Success rate 0.20 0.56 0.00 0.24 0.12 0.00
Time (s) 148.88 107.06 t/o 130.27 232.97 t/o

SayCan Success rate 0.02 0.14 0.00 0.00 0.00 0.00
Time (s) 54.01 81.68 t/o t/o t/o t/o

Iterative
Replanning

Success rate 1.00 0.98 0.36 0.22 0.36 0.36
Time (s) 64.00 94.47 260.76 163.43 163.42 128.83

LLM-MCTS Success rate 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) t/o t/o t/o t/o t/o t/o

STaLM
(ours)

Success rate 1.00 1.00 0.84 0.96 0.88 0.96
Time (s) 31.22 54.18 241.67 148.37 233.21 165.85

Table 2. Success rate and average planning time of success for STaLM and
baselines. Timeout (t/o) indicates cases where solutions were not found within
the max time limit.

Version P1 P2 P3 P4 P5 P6
w/o UCT 1.00 1.00 0.78 0.76 0.82 0.94
STaLM 1.00 1.00 0.84 0.96 0.88 0.96

Table 3. Success rate of ablated version of
STaLM

Prompting P1 P2 P3 P4 P5 P6Occ.
info

Ask
Chall.

- - 1.00 0.92 0.64 0.72 0.28 0.32
- X 0.98 0.84 0.64 0.50 0.20 0.20
X - 1.00 0.94 0.72 0.38 0.40 0.54
X X 1.00 1.00 0.84 0.96 0.88 0.96

Table 4. Success rate of ablated versions of
prompt used by STaLM

instance, in P4, the robot fails to open the door because it
picks up the plate first and the hand is occupied. In P5, P6,
the LLM is unaware that other objects cannot be placed in
the goal region if the BBQ grill is placed first.

Computing occlusion predicates and asking LLM for
challenges bring a non-trivial amount of increase in time to
obtain task plans from LLM. So, to investigate the efficacy
of our prompt design we test ablated versions of the prompt,
as shown in Table 4. Without occlusion predicates, the LLM
cannot perform state-based causal reasoning using geometric
predicates, leading to the lowest performance of all ablated
versions. Without asking for the challenge, the LLM returns
responses that do not respect preconditions.
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Appendix

A Caching state computations

We cache grounded predicates (literals) to reduce redundant
computations. During PICK, all the objects are not moved,
so we reuse all the literals. For OPEN, the occlusion by
the door is cleared, so we reuse all the literals except
those about occlusions by the door. PLACE removes an
object from one region and adds it to another. Therefore,
we discard any literals by the moved object and recompute
the occlusion for the objects in the target region only. We
also save intermediate computations. We cache gripper pose
sampled during PICKOCCLUDEDBY and reuse them to grasp
the same target for PLACEOCCLUDEDBY. The robot path
computed for each object without movable objects stays the
same within the same state, so we cache all the collisions and
reuse them in the same state.

B Subroutines of STaLM

We provide the pseudocode for subroutines of STaLM
described in Algorithm 1: Concretize that is used to
concretizes the task plans and WarmStartedUCT which
uses WarmUpTree to initialize the search tree with Plans
and conducts MCTS with Simulate.

Algorithm 2: Concretize(TaskPlans, s, h)

1 Global Variables: T,H, ψ
2 success← False, Plans← []
3 for TaskPlan in TaskPlans do
4 plan← []
5 for a(δ) in TaskPlan do
6 κ ∼ ψ(s, a(δ)), s′ ← T (s, a(δ, κ))
7 plan.append(a(δ, κ))
8 if h > H or a(δ, κ)is not feasible then
9 break

10 if s′ ∈ G then
11 success← True
12 break
13 s← s′, h← h+ 1

14 Plans.append(plan)

15 return success, Plans

Concretize in Algorithm 2 takes as input TaskPlans,
state s, and search depth h. For each discrete action a(δ) of
TaskPlan, we sample continuous parameters κ with random
sampler ψ and run the transition model (L5-6). If the
resulting action a(δ, κ) is infeasible or exceeds max search
depth H , the iteration stops for the plan (L8-9). If s′ satisfies
the goal G, we terminate the process (L10-12). After iterating
over all task plans, we return success and Plans(L15).
WarmStartedUCT shown in Algorithm 3 takes Plans,

state s, search depth h, and planning budgetNbudget as input.
It starts by initializing the root node of tree T with node
value Q, number of visits n, and set of action parameters
that have been tried U (L2). To consider the hybrid action
space, search tree T consists of two types of nodes: discrete
node T (s) where abstract choices are made and continuous
node T (sa(δ)) where continuous choices are made. Using
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Algorithm 3: WarmStartedUCT(Plans, s, h,Nbudget)

1 Global Variables: T,R,H
2 T (s) = {Q(s, ·) = 0, n = 0, U = ∅, }
3 T ← WarmUpTree(T , s, Plans)
4 for i = 0 to Nbudget do
5 Simulate(s, h, 0, T )
6 return T

WarmUpTree, we warm-up the tree (L3) and perform UCT
with Nbudget times of Simulate (L4-5).

Algorithm 4: WarmUpTree(T , s, ConcretePlans)

1 Global Variables: T,R,H, γ
2 for plan in Plans do
3 AddToTree(T , s, 0, plan)
4 return T
5 Function AddToTree(T , s, total, plan):
6 a(δ, κ) = plan.pop()
7 if a(δ) /∈ T (s).U then
8 T (s).U = T (s).U ∪ { a(δ)}
9 T (sa(δ)) = {Q(sa(δ), ·) = 0, n = 0, U = ∅}

10 T (sa(δ)).n = T (sa(δ)).n+ 1
11 if κ /∈ T (sa(δ)).U then
12 T (sa(δ)).U = T (sa(δ)).U ∪ { κ}
13 s′ ← T (s, a(δ, κ))
14 T (s′) = {Q(s′, ·) = 0, n = 0, U = ∅}
15 s′, r ← T (s, a(δ, κ)), R(s, a(δ, κ))
16 T (s′).n = T (s′).n+ 1
17 if len(plan)! = 0 then
18 total← r + γAddToTree(T , s′, total,plan)
19 else
20 total←Rollout(s′)

21 T (sa(δ)).Q(sa(δ), κ) += total−T (sa(δ)).Q(sa(δ),κ)

T (sa(δ)).n

22 T (s).Q(s, a(δ)) += total−T (s).Q(s,a(δ))
T (s).n

23 return total

WarmUpTree in Algorithm 4 takes input T , s, and
Plans. With AddToTree, Plans are used to initialize T .
AddToTree takes as input T , s, accumulated reward total
and plan. It pops a(δ, κ) from a plan and initializes a
continuous node T (sa(δ)) with the discrete action a(δ)
(L7-9). Similarly, it expands the continuous node with κ
and initializes a discrete node (L11-15). AddToTree is
recursively called up to the last action of a plan (L17). The
value of leaf node is estimated by Rollout and backed-up
(L19-22).
Simulate in Algorithm 5, takes as input s, h, total

and T . It begins by selecting a discrete action according to
UCT, where exploration constant c is a hyperparameter, and
adds a continuous node to the tree if the discrete action has
not been tried (L3-5). Then, we use Progressive Widening
(PW) [21] to sample a new κ only if the number of children
in that node is below kα ·N(τ)cα , where k > 0 and cα ∈
(0, 1) are hyperparameters. We select κ using UCT and
run the transition and reward model with selected action
â(δ, κ) to sample subsequent state s′ (L7-10). This process is
recursively iterated until the leaf node (L17-18) or simulation

Algorithm 5: Simulate(s, h, total, T )

1 Global Variables: T,R, ψ,H, γ, kα, cα
/* Select discrete action with UCT

*/
2 â(δ)← argmaxa(δ) T (s).Q(s, a(δ)) +

c
√

log T (s).n
1+T (s).child(a(δ)).n

3 if â(δ) /∈ T (s).U then
4 T (s).U = T (s).U ∪ { â(δ)}

/* Add continuous node to tree */
5 T (sâ(δ)) = {Q(sâ(δ), ·) = 0, n = 0, U = ∅}
6 T (sâ(δ)).n = T (sâ(δ)).n+ 1
/* Progessive Widening */

7 if |T (sâ(δ)).U | ≤ ka(T (sâ(δ)).n)cα then
8 κ ∼ ψ(s, â(δ)), T (sâ(δ)).U =

T (sâ(δ)).U ∪ {κ}
/* Select continuous parameter with

UCT */
9 κ← argmaxκ∈T (sâ(δ)).U

T (sâ(δ)).Q(sâ(δ), κ) +

c
√

log T (sâ(δ)).n

1+T (sâ(δ)).child(κ).n

10 s′, r ← T (s, â(δ, κ)), R(s, â(δ, κ))
/* Add discrete node to tree */

11 if κ /∈ T (sâ(δ)).U then
12 T (s′) = {Q(s′, ·) = 0, n = 0, U = ∅}
13 h← h+ 1, T (s′).n = T (s′).n+ 1
14 if T (s′).U ! = ∅ then
15 if h > H or s′ 6= feasible or s′ ∈ G then
16 total← r
17 else
18 total← r + γSimulate(s′, h, total, T )
19 else
20 total← Rollout(s′)

21 T (sa(δ)).Q(sa(δ), κ) += total−T (sa(δ)).Q(sa(δ),κ)

T (sa(δ)).n

22 T (s).Q(s, a(δ)) += total−T (s).Q(s,a(δ))
T (s).n

23 return total

is terminated due to reaching the max planning horizon H ,
encountering infeasible action, or achieving G (L15-16). At
the leaf node, the value of the node is estimated by Rollout
and backed up along selected nodes (L19-22).

C Hyperparameters of STaLM
For STaLM, we use (Nbatch, Nbudget) = (5, 30) and
gpt-4-turbo-2024-04-09 with a decoding tempera-
ture of 1 to generate TaskPlans in QueryLLM. For Warm-
StartUCT of STaLM, We use UCT exploration constant c =
50, PW constants (kα, cα) = (1.5, 0.15).

D Hand designed heuristics
The modified Hcount [1] used in UCT-with-Hcount is:

Hcount = |M | − |OInGoal|+ 1otarget∈OInGoal

−1otarget /∈OInGoal∧otarget∈Ogoal

M is the set of objects that occludes the goal objects Ogoal
and that recursively occludes those occluders. OInGoal refers
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to the objects already in the goal. We add 1 if otarget ∈
OInGoal and discount 1 if otarget /∈ OInGoal is an goal
object. Since Hcount computes cost-to-go, we convert it to
a value function for a node by using Q = 3 · n(Ogoal)− 3 ·
Hcount, where Q is the node value.

E Example of LLM response in STaLM
In the following, we provide examples of responses from
LLM queries made in STaLM for P1-6.

## Possible Challenges for unachieved goals based on
current state ##
1. Multiple objects are occluded by ‘kitchen door‘, which
makes picking them difficult unless ‘kitchen door‘ is
opened.
2. The locations of the objects ‘salter1‘, ‘salter2‘,
‘bottle1‘, ‘bottle2‘, and ‘bottle3‘ need to be changed, but
their placement may be occluded by various objects or by
‘kitchen door‘.

## Plan ##
plan = [ (’open’, ’kitchen door’), # Open the kitchen door
to prevent occlusion
(’pick’, ’bottle1’), # Pick bottle1 from table2
(’place’, ’bottle1’, ’on’, ’table1’), # Place bottle1 on table1
(’pick’, ’bottle2’), # Pick bottle2 from minifridge
(’place’, ’bottle2’, ’on’, ’counter2’), # Place bottle2 on
counter2
(’pick’, ’salter1’), # Pick salter1 from counter1
(’place’, ’salter1’, ’on’, ’counter2’), # Place salter1 on
counter2
(’pick’, ’salter2’), # Pick salter2 from counter2
(’place’, ’salter2’, ’on’, ’shelf’), # Place salter2 on shelf
(’pick’, ’bottle3’), # Pick bottle3 from table2
(’place’, ’bottle3’, ’on’, ’table1’), # Place bottle3 on table1
(’pick’, ’salter3’), # Pick salter3 from table1
(’place’, ’salter3’, ’on’, ’table2’) # Place salter3 on table2
]

Figure 5. Example LLM response of STaLM in P1

## Possible Challenges for unachieved goals based on
current state ##
1. **Relocation of ‘salter‘**: The salter is currently
positioned on ‘counter2‘ and needs to be relocated to
‘table2‘ as per the goal. However, any pick action for the
salter is occluded by both ‘bottle2‘ and ‘bottle3‘.
2. **Accessibility of ‘salter‘**: Before ‘salter‘ can be
picked up, the occluding items (‘bottle2‘ and ‘bottle3‘)
need to be moved.
3. **Placement of ‘salter‘ by ‘bottle1‘ on ‘table2‘**: The
specified final position for the ‘salter‘ is ‘right of‘ ‘bottle1‘
on ‘table2‘. Currently, ‘bottle1‘ is already on ‘table2‘. So,
the ‘salter‘ needs to be placed adjacent to it correctly.

## Plan ##
plan = [(’pick’, ’bottle3’), # Pick up bottle3 which
occludes picking up the salter
(’place’, ’bottle3’, ’left of’, ’bottle2’), # Temporarily
place it to clear the path
(’pick’, ’bottle2’), # Pick up bottle2 which also occludes
the salter
(’place’, ’bottle2’, ’left of’, ’bottle3’), # Temporarily
place it so salter can be accessed
(’pick’, ’salter’), # Now pick up the salter
(’place’, ’salter’, ’on’, ’table2’), # Place the salter on
table2
(’place’, ’salter’, ’right of’, ’bottle1’), # Finally, place the
salter right of bottle1 as required in the goal ]

Figure 6. Example LLM response of STaLM in P2

Prepared using sagej.cls
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## Possible Challenges for unachieved goals based on
current state ##
1. **Moving objects to different positions**: To achieve
the goal of having milk and coke on ‘counter2‘, these
objects need to be picked up and placed on the counter.
2. **Obstructed Picks**: The initial state mentions
occlusions in picking certain items including milk and
coke, thus complicating the pick action.
3. **Unavailable Target Region**: ‘counter2‘ is not
declared in the problem’s object definitions, assuming it’s
an error, and considering placement on ‘counter1‘ instead.

## Plan ##
plan = [(’pick’, ’coke’),
(’place’, ’coke’, ’on’, ’counter1’),
(’pick’, ’milk’),
(’place’, ’milk’, ’on’, ’counter1’) ]

Figure 7. Example LLM response of STaLM in P3

## Possible Challenges for unachieved goals based on
current state ##
1. **Obstacles and Occlusions**: Moving or placing
objects will be a significant challenge due to multiple
occlusions, as detailed in the problem.
2. **Opening the Kitchen Door**: The kitchen door
is currently closed (‘Closed kitchen door‘), which is
occluding several actions for moving objects. Thus,
the door must be opened first to reduce occlusions and
facilitate other actions.
3. **Handling Occluded Actions**: The picking up
of ‘salter‘ is currently occluded by both ‘bottle2‘ and
‘bottle3‘. Similarly, placing ‘plate‘ on ‘counter1‘ has
occlusions.
4. **Switch between picking and placing**: Robot will
have to alternately pick and place objects, and this requires
ensuring that the robot hand is available (‘HandAvailable‘).

## Plan ##
plan = [ (’open’, ’kitchen door’), # Open the kitchen door
to remove several occlusions
(’pick’, ’plate’), # Pick up the plate, assuming the
kitchen door being open has resolved the occlusion
(’place’, ’plate’, ’on’, ’counter1’), # Place the plate on
counter1
(’pick’, ’salter’), # Pick up the salter
(’place’, ’salter’, ’on’, ’table2’), # Place the salter on table2
(’place’, ’salter’, ’right of’, ’bottle1’) # Place the salter to
the right of bottle1 on table2]

Figure 8. Example LLM response of STaLM in P4

F Example of prompt used in STaLM
In Figure 11, we provide an example of a prompt used to
generate task plans with LLM in P5.

## Possible Challenges for Unachieved Goals Based on
Current State ##
1. The ‘coke‘ and ‘wine‘ need to be placed on ‘counter2‘
but their current positions and potential placements are
occluded by the ‘beef grill‘ and the ‘kitchen door‘.
2. ‘PickOccludedBy‘ predicates indicate that ‘coke‘ and
‘beef grill‘ are occluded by the ‘kitchen door‘, which is
closed.
3. ‘AtPosition‘ predicates show that all movable objects
are initially located on different counters and tables than
‘counter2‘, where the objective is to position them.

To achieve the goal, certain actions involving moving
occluding objects or opening doors will be needed.

## Plan ##
plan = [(’open’, ’kitchen door’), # Open the kitchen door
to ensure picking of coke and beef grill is possible
(’pick’, ’coke’), # Pick coke, requirement: hand available
and not unsafe to pick
(’place’, ’coke’, ’on’, ’counter2’), # Place coke on
counter2, addressing one part of the goal
(’pick’, ’beef grill’), # Pick beef grill now that
kitchen door is open
(’place’, ’beef grill’, ’on’, ’counter2’), # Place beef grill
on counter2, addressing another part of the goal
(’pick’, ’wine’), # Pick wine from its initial position
(’place’, ’wine’, ’on’, ’counter2’) # Place wine on
counter2; achieving the final part of the goal]

Figure 9. Example LLM response of STaLM in P5

## Possible Challenges for Unachieved Goals Based on
Current State ##
1. The ‘coke‘ and ‘wine‘ need to be placed on ‘counter2‘
but their current positions and potential placements are
occluded by the ‘beef grill‘ and the ‘kitchen door‘.
2. ‘PickOccludedBy‘ predicates indicate that ‘coke‘ and
‘beef grill‘ are occluded by the ‘kitchen door‘, which is
closed.
3. ‘AtPosition‘ predicates show that all movable objects
are initially located on different counters and tables than
‘counter2‘, where the objective is to position them.

To achieve the goal, certain actions involving moving
occluding objects or opening doors will be needed.

## Plan ##
plan = [(’open’, ’kitchen door’), # Open the kitchen door
to ensure picking of coke and beef grill is possible
(’pick’, ’coke’), # Pick coke, requirement: hand available
and not unsafe to pick
(’place’, ’coke’, ’on’, ’counter2’), # Place coke on
counter2, addressing one part of the goal
(’pick’, ’beef grill’), # Pick beef grill now that
kitchen door is open
(’place’, ’beef grill’, ’on’, ’counter2’), # Place beef grill
on counter2, addressing another part of the goal
(’pick’, ’wine’), # Pick wine from its initial position
(’place’, ’wine’, ’on’, ’counter2’) # Place wine on
counter2; achieving the final part of the goal ]

Figure 10. Example LLM response of STaLM in P6

Prepared using sagej.cls
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Figure 11. Example of prompt used in STaLM in P5

Prepared using sagej.cls
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